Луна. Спутник Земли. Луна — Спутник земли Какие спутники существуют

Мы провели эксперимент: спросили у знакомых, знают ли они, сколько спутников у Земли. Из десяти человек только один решил уточнить: «Каких именно? Естественных или искусственных?». Остальные вспомнили, что у Земли есть спутник Луна, и они слышали о каких-то ещё. Чтобы развеять сомнения в этом вопросе, Прекрасный Мир решил рассказать, какие спутники есть у Земли и чем они отличаются.

Что такое спутник

Спутник - объект, который вращается вокруг другого объекта в космосе по определенной траектории. В зависимости от происхождения спутники бывают естественными и искусственными.

Луна - естественный спутник Земли

Есть 2 наиболее распространенные теории о том, как появляются естественные спутники

Луна - это единственный естественный спутник Земли. Сейчас этот факт общепризнан, но в 19-м и первой половине 20-го веков астрономы постоянно предполагали наличие у Земли и других спутников.

Гипотетические естественные спутники Земли


Болид - яркий и заметный метеор

Фредерик Пти изучал болиды - достаточно яркие и заметные метеоры. По его вычислениям получалось, что некоторые болиды двигались по эллиптической орбите. Из-за этого он предположил, что эти болиды могут быть спутниками Земли. Научное сообщество с его теорией не согласилось и указало Пти на ошибки в вычислениях: например, он не учитывал сопротивление воздуха и не брал в расчет погрешности в исходных данных.

Письмо Георга Вальтемата в журнал «Сайенс»

(Sience) в котором он сообщает, что открыл

второй спутник Земли.

Георг Вальтемат предположил, что у Земли есть 3 маленьких спутника. Он считал, что спутники в разное время наблюдали многие ученые, но приняли их за пятна на солнце. Вальтемат заявил, что, в основном, спутники не видно, потому что они отражают мало света. Тем не менее, он вычислил, когда спутник пройдет по диску Солнца и будет заметен. Ученые Уинклер (Йена, Германия) и Иво фон Бенко (Пула, Австрия) проверили его заявление, но в назначенное время спутника не увидели.

Появлялись и другие заявления о наблюдении спутников Земли. Такие заявление делали астролог Горнольд, астроном-любитель Шпиль, ученый Джон Багби. Ни одно из таких заявлений не подтвердилось.

Квазиспутники

Круитни - это квазиспутник, он не является естественным спутником Земли.

В 21 веке ученые обнаружили небесные тела, которые были похожи на спутники. Эти тела назвали квазиспутниками. В отличие от Луны, квазиспутники обращаются вокруг Солнца и находятся от него примерно на том же расстоянии, что и Земля. Их орбиты нестабильны, и они периодически приближаются к Земле. В научно-популярной литературе квазиспутники называют «вторыми лунами» или «вторыми спутниками». Это упрощенное название, но из-за него порой возникает путаница: одно время в интернете появлялись статьи об обнаружении второго естественного спутника у Земли - Круитни. На самом деле, Круитни - это квазиспутник.

Искусственные спутники

ГЛОНАСС - глобальная навигационная спутниковая система, российская разработка

Искусственный спутник Земли - это космический летательный аппарат, который вращается вокруг планеты по эллиптической орбите. Обычно под этим названием понимают беспилотные аппараты.

Спутников в космосе много: спутники связи, разведывательные и навигационные спутники, метеорологические, астрономические и другие исследовательские спутники.

Что посмотреть интересное о космосе

О космосе сейчас много материалов, которыми можно просто восторгаться, даже если вы ничего не понимаете в этой области. Если нравится космос, то Прекрасный Мир рекомендует посмотреть:

    Гугл Луна. Можно рассмотреть поверхность Луны и найти, куда прилунялись экспедиции: https://www.google.com/intl/ru/moon/

    Галерея Наса. Особенно крутой раздел с фото дня: https://www.nasa.gov/multimedia/imagegallery/iotd.html

    Инстаграм Наса. Здесь публикуют короткие видео с запуском ракет, потрясающие фото и видео из космоса: https://www.instagram.com/nasa/

    Инстаграм Роскосмоса. Здесь тоже фото и видео из космоса, особенно много прекрасных фотографий Земли: https://www.instagram.com/roscosmosofficial/

    Телестудия Роскосмоса. Новости, научно-популярные программы и видеоролики на русском: http://www.tvroscosmos.ru/

P.S. Статья является научно-популярной и предназначена для новичков. Поэтому мы написали ее простым языком, упуская сложную терминологию.

С пожеланиями запоминающихся лунных ночей,

Анастасия Горбунова.

Статья написана для Прекрасного Мира.

Спутник Земли — это любой объект, который движется по искривленному пути вокруг планеты. Луна — это оригинальный, естественный спутник Земли, и есть много искусственных спутников, обычно на близкой орбите к Земле. Путь, по которому проходит спутник, — это орбита, которая иногда принимает форму круга.

Содержание:

Чтобы понять, почему спутники двигаются таким образом, мы должны вернуться к нашему другу Ньютону. существует между любыми двумя объектами во Вселенной. Если бы не эта сила, спутник, движущийся вблизи планеты, продолжал бы двигаться с той же скоростью и в том же направлении — по прямой. Однако этот прямолинейный инерционный путь спутника уравновешен сильным гравитационным притяжением, направленным к центру планеты.

Орбиты искусственных спутников Земли

Иногда орбита искусственного спутника выглядит как эллипс, раздавленный круг, который перемещается вокруг двух точек, известных как фокусы. Применяются те же основные законы движения, за исключением того, что планета находится в одном из фокусов. В результате, чистая сила, применяемая к спутнику, не равномерна по всей орбите, и скорость спутника постоянно изменяется. Он движется быстрее всего, когда он ближе всего к Земле — точка, известная как перигей — и самая медленная, когда она находится дальше всего от Земли — точка, известная как апогей.

Существует множество различных спутниковых орбит Земли. Те, которые получают наибольшее внимание — это геостационарные орбиты, поскольку они неподвижны над определенной точкой Земли.

Орбита, выбранная для искусственного спутника, зависит от ее применения. Например, для прямого вещательного телевидения используется геостационарная орбита. Многие спутники связи также используют геостационарную орбиту. Другие спутниковые системы, такие как спутниковые телефоны, могут использовать низкоземные орбиты.

Аналогичным образом спутниковые системы, используемые для навигации, такие как система Navstar или Global Positioning (GPS), занимают относительно низкую орбиту Земли. Есть также много других типов спутников. От метеорологических спутников, до спутников для исследований. Каждый из них будет иметь свой собственный тип орбиты в зависимости от его применения.

Фактическая выбранная орбита спутника Земли будет зависеть от факторов, включая ее функцию, и от области, в которой она должна служить. В некоторых случаях орбита спутника Земли может достигать 100 миль (160 км) для низкоорбитальной орбиты LEO, в то время как другие могут достигать более 22 000 миль (36000 км), как в случае GEO-орбитальной орбиты GEO.

Первый искусственный спутник земли

Первый искусственный спутник земли был запущен 4 октября 1957 года Советским Союзом и был первым искусственным спутником в истории.

Спутник 1 был первым из нескольких спутников, запущенных Советским Союзом в программе «Спутник», большинство из которых были успешными. Спутник 2 следовал за вторым спутником на орбите, а также первым, чтобы нести животное на борту, суку по имени Лайка. Первый провал потерпел Спутник 3.

Первый спутник земли имел приблизительную массу 83 кг, имел два радиопередатчика (20,007 и 40,002 МГц) и вращался на орбите Земли на расстоянии 938 км от своего апогея и 214 км на своем перигее. Анализ радиосигналов использовался для получения информации о концентрации электронов в ионосфере. Температура и давление были закодированы в течение длительности радиосигналов, которые он излучал, что указывает на то, что спутник не был перфорирован метеоритом.

Первый спутник земли представлял собой алюминиевую сферу диаметром 58 см, имеющую четыре длинные и тонкие антенны длиной от 2,4 до 2,9 м. Антенны выглядели как длинные усы. Космический аппарат получил информацию о плотности верхних слоев атмосферы и распространении радиоволн в ионосфере. Приборы и источники электрической энергии были размещены в капсуле, которая также включала радиопередатчики, работающие в 20.007 и 40.002 МГц (около 15 и 7,5 м на длине волны), выбросы были сделаны в альтернативных группах по 0, 3 с продолжительности. Заземление телеметрии включало данные о температуре внутри и на поверхности сферы.

Поскольку сфера была заполнена азотом под давлением, у «Спутника 1» появилась первая возможность обнаружить метеориты, хотя она и не обнаружила. Потеря давления внутри, из-за проникновения на внешнюю поверхность, была отражена в данных о температуре.

Виды искусственных спутников

Искусственные спутники бывают разных видов, форм, размеров и играют разные роли.


  • Спутники погоды помогают метеорологам прогнозировать погоду или видеть, что происходит на данный момент. Хорошим примером является геостационарный эксплуатационный экологический спутник (GOES). Эти спутники земли обычно содержат камеры, которые могут возвращать фотографии земной погоды, либо с фиксированных геостационарных положений, либо с полярных орбит.
  • Спутники связи позволяют передавать телефонные и информационные разговоры через спутник. Типичные спутники связи включают Telstar и Intelsat. Самой важной особенностью спутника связи является приемоответчик — радиоприемник, который принимает разговор на одной частоте, а затем усиливает его и повторно передает обратно на Землю на другой частоте. Спутник обычно содержит сотни или тысячи транспондеров. Коммуникационные спутники обычно геосинхронны.
  • Широковещательные спутники передают телевизионные сигналы от одной точки к другой (аналогично спутникам связи).
  • Научные спутники , такие как Космический телескоп Хаббл, выполняют всевозможные научные миссии. Они смотрят на все, от солнечных пятен до гамма-лучей.
  • Навигационные спутники помогают кораблям и самолетам перемещаться. Самыми известными являются спутники GPS NAVSTAR.
  • Спасательные спутники реагируют на сигналы радиопомех.
  • Спутники наблюдения Земли проверяют планету на предмет изменений во всем: от температуры, лесонасаждений, до покрытия ледяного покрова. Самыми известными являются серии Landsat.
  • Военные спутники Земли находятся на орбите, но большая часть фактической информации о положении остается секретной. Спутники могут включать ретрансляцию зашифрованной связи, ядерный мониторинг, наблюдение за передвижениями противника, раннее предупреждение о запуске ракет, подслушивание наземных радиолиний, радиолокационную визуализацию и фотографии (с использованием, по сути, больших телескопов, которые фотографируют интересные в военном отношении области).

Земля с искусственного спутника в реальном времени

Изображения земли с искусственного спутника, транслируемое в режиме реального времени НАСА с Международной космической станции. Изображения захватываются четырьмя камерами высокого разрешения, изолированными от низких температур, что позволяет нам чувствовать себя ближе к космосу, чем когда-либо.

Эксперимент (HDEV) на борту МКС был активирован 30 апреля 2014 года. Он установлен на внешнем грузовом механизме модуля Columbus Европейского космического агентства. Этот эксперимент включает несколько видеокамер высокой четкости, которые заключены в корпус.

Совет; поместите плеер в HD и полный экран. Бывают случаи, когда экран будет черным, это может быть по двум причинам: станция проходит через зону орбиты, где она находится ночью, орбита длится приблизительно 90 мин. Либо экран темнеет когда камеры меняются.

Сколько спутников на орбите Земли 2018?

Согласно индексу объектов, запускаемых в космическое пространство, которое ведет Управление Организации Объединенных Наций по вопросам космического пространства (UNOOSA), в настоящее время на орбите Земли около 4 256 спутников, что на 4,39% больше, чем в прошлом году.


221 спутник был запущен в 2015 году, что является вторым по величине за один год, хотя он ниже рекордного количества 240, запущенного в 2014 году. Увеличение числа спутников, вращающихся вокруг Земли, меньше, чем число, запущенное в прошлом году, поскольку спутники имеют ограниченную продолжительность жизни. Большие спутники связи от 15 и более лет, в то время как малые спутники, такие как CubeSat, могут рассчитывать только на срок службы 3-6 месяцев.

Сколько из этих орбитальных спутников Земли работает?

Союз ученых (UCS) уточняет, какие из этих орбитальных спутников работают, и это не так много, как вы думаете! В настоящее время существует только 1 419 оперативных спутников Земли- всего около одной трети из всего числа на орбите. Это означает, что вокруг планеты много бесполезного металла! Вот почему существует большой интерес со стороны компаний, которые смотрят, как они захватывают и возвращают космический мусор, с использованием таких методов, как космические сети, рогатки или солнечные паруса.

Что делают все эти спутники?

Согласно данным UCS, основными целями операционных спутников являются:

  • Связь — 713 спутника
  • Наблюдение Земли / наука — 374 спутника
  • Технологическая демонстрация / разработка с использованием 160 спутников
  • Навигация & GPS — 105 спутника
  • Космическая наука — 67 спутников

Следует отметить, что некоторые спутники имеют несколько целей.

Кому принадлежат спутники Земли?

Интересно отметить, что в базе данных UCS есть четыре основных типа пользователей, хотя принадлежность 17% спутников у нескольких пользователей.

  • 94 спутника, зарегистрированны гражданскими лицами: они как правило, являются учебными заведениями, хотя есть и другие национальные организации. 46% этих спутников имеют цель развитие технологий, таких как наука о Земле и космосе. Наблюдение составляют еще 43%.
  • 579 принадлежат коммерческим пользователям: коммерческие организации и государственные организации, которые хотят продавать собранные ими данные. 84% этих спутников сосредоточены на услугах связи и глобального позиционирования; из оставшихся 12% — спутники наблюдения Земли.
  • 401 спутник принадлежит государственными пользователями: в основном национальные космические организации, а также другие национальные и международные органы. 40% из них — спутники связи и глобального позиционирования; еще 38% сосредоточено на наблюдении Земли. Из оставшихся — развитие космической науки и техники составляет 12% и 10% соответственно.
  • 345 спутника принадлежат военным: здесь снова сосредоточена связь, наблюдения Земли и системы глобального позиционирования, причем 89% спутников имеют одну из этих трех целей.

Сколько спутников у стран

По данным UNOOSA около 65 стран запустили спутники, хотя в базе данных UCS имеется только 57 стран, зарегистрированных с использованием спутников, и некоторые спутники перечислены с совместными / многонациональными операторами. Самые большие:

  • США с 576 спутниками
  • Китай с 181 спутниками
  • Россия с 140 спутниками
  • Великобритания указана как имеющая 41 спутник, плюс участвует в дополнительных 36 спутниках, которыми располагает Европейское космическое агентство.

Помните, когда вы смотрите!
В следующий раз, когда вы посмотрите на ночное небо, помните, что между вами и звездами есть около двух миллионов килограммов металла, окружающего Землю!

Наука

В нашей Солнечной системе имеется огромное количество различных космических тел, среди которых 200 крупных спутников, вращающихся вокруг основных планет, карликовых планет и даже вокруг астероидов. Многие из этих спутников обладают любопытными особенностями. В этой статье вы сможете познакомиться с 10 самыми интересными спутниками нашей звездной системы и узнать об их особенностях.


1) Нереида, спутник Нептуна


Нереида был открыт в 1949 году Джерардом Койпером. Это третий по размерам спутник Нептуна. Он имеет самую эксцентрическую орбиту из всех спутников Солнечной системы. Из-за этого расстояние между планетой и ее спутником сильно варьируется. Спутник может подлететь к Нептуну самое близкое на 1,4 миллионов километров. Дальше всего он может удалиться на расстояние 9,6 миллионов километров. Чтобы сделать один оборот вокруг Нептуна, учитывая такое далекое расстояние от него, Нереиде требуется 360 земных суток.

2) Мимас, спутник Сатурна


Этот небольшой спутник был открыт в 1789 году Уильямом Гершелем. Средний диаметр этого объекта составляет около 400 километров. Мимас примечателен тем, что на его поверхности имеется гигантский кратер Гершель диаметром около 130 километров и глубиной 10 километров. Гершель не самый крупный кратер спутников Солнечной системы, однако он очень необычный. Кратер покрывает одну треть поверхности Мимаса и делает его похожим на станцию Звезда смерти из "Звездных воин".

3) Япет, спутник Сатурна


Обнаруженный в 1671 году Джованни Кассини , спутник Сатурна Япет был признан одним из самых странных спутников Солнечной системы. Диаметр Япета составляет в среднем 1460 километров. Отличительной особенностью этого спутника является то, что он имеет участки разного цвета, которые по-разному отражают свет. Одна половина планеты черная как уголь, когда как другая половина исключительно светлая и яркая. Из-за этого мы можем наблюдать спутник, только когда он появляется по одну сторону от планеты. На Япете также имеется горный хребет – экваториальное горное кольцо, которое достигает в высоту около 10 километров и опоясывает объект по его экватору. Ученые выдвинули 2 гипотезы, объясняющие появление этих гор. По одной версии кольцо сформировалось в начале существования спутника, когда Япет вращался намного быстрее, чем сейчас. Другие ученые полагают, что горная цепь образовалась из материала другого спутника, который принадлежал самому Япету, но разбился, а его обломки осели на экваторе Япета.

4) Дактиль, спутник астероида Ида


Обнаруженный в 1995 году с помощью космического корабля Галилей , спутник астероида Ида – Дактиль - имеет около километра в диаметре. Этот спутник примечателен тем, что он оказался первым обнаруженным спутником, вращающимся вокруг астероида. Ученые пока точно не могут сказать о происхождении этого спутника и не знают, является ли он частью родного астероида, либо был когда-то захвачен этим астероидом. Дактиль доказывает существование спутников у астероидов. После этого ученые заметили еще два десятка подобных спутников у разных других астероидов Солнечной системы.

5) Европа, спутник Юпитера


Европа был обнаружен Галилео Галилеем в январе 1610 года. Он совсем немного меньше нашей Луны. Поверхность Европы поразительна, она изрезана темными пересекающимися линиями. Ученые предполагают, что линии представляют собой трещины и разломы ледяного панциря Европы. Возможно, трещины образовались из-за влияния Юпитера и остальных вращающихся вокруг планеты спутников. Под толстым слоем корки льда на Европе, возможно, находится океан жидкой соленой воды, который и делает спутник особенным. В отличие от Земли, считается, что на Европе очень глубокий океан, поэтому он покрывает весь спутник полностью. Так как Европа расположен довольно далеко от Солнца, его океан замерз, образуя кору толщиной около 100 километров. Возможно, из-за внутренней более высокой температуры вода под коркой льда может оставаться жидкой.

6) Энцелад, спутник Сатурна


Энцелад является шестым по величине спутником Сатурна. Он не самый крупный, однако имеет ряд любопытных особенностей. Энцелад открыл в 1789 году Уильям Гершель . Он является самым ярким космическим телом Солнечной системы и отражает 100 процентов солнечного света от своей поверхности. Этот факт делает его одним из самых холодных мест, температура на поверхности спутника около минус 200 градусов Цельсия. Как видно на снимке, на этом спутнике имеется какое-то количество ударных кратеров, однако есть и довольно гладкие области, которые указывают на то, что в геологически недалеком прошлом поверхность спутника выровнялась. На южном полюсе спутника имеются крупные темные разломы, которые также говорят о недавней геологической активности. Из этих разломов выпускаются тонны материала, из которого состоит кольцо Сатурна E.

7) Ио, спутник Юпитера


Ио был обнаружен в январе 1610 тем же Галилео Галилеем. Он немного больше нашей Луны. Ио является самым вулканически активным местом Солнечной системы. Спутник покрыт множеством вулканов, которые выпускают струи веществ на расстояние около 300 километров над поверхностью. Обычно объект такого размера должен был бы прекратить вулканическую деятельность еще очень давно, но из-за орбитальных резонансов Ио с Юпитером, Европой и Ганимедом, в недрах спутника происходит приливной разогрев. Если опустить подробности, можно сказать, что повышенная вулканическая активность спутника связана с расположенными поблизости космическими телами и составом его внутренних характеристик. Приливной разогрев заставляет большую часть лежащего под поверхностью вещества оставаться в жидкостном состоянии, что постоянно меняет поверхность спутника.

8) Титан, спутник Сатурна


Титан - единственный спутник помимо нашей Луны, на поверхности которого приземлился космический аппарат. Он был открыт в 1655 году Христианом Гюйгенсом. Титан является вторым по величине спутником в Солнечной системе. Он покрыт плотной туманной атмосферой, состоящей в основном из метана, азота и этана. Этот спутник известен тем, что на нем имеется атмосфера, похожая на атмосферу планеты. Также это единственное место в Солнечной системе, где, как доказали ученые, на поверхности имеется жидкость, хотя эта жидкость далеко не вода, а метан.

9) Тритон, спутник Нептуна


Тритон был открыт в октябре 1846 года астрономом Уильямом Ласселом, через 17 дней после открытия самого Нептуна. Это самый крупный из спутников планеты Нептун. Тритон отличается тем, что является единственным крупным спутником в Солнечной системе, который вращается вокруг планеты в направлении, обратном вращению самой планеты. Это наводит на мысль, что Тритон – захваченный Нептуном спутник, потому что все естественные спутники в Солнечной системе вращаются в ту же сторону, что и их планеты. Единственное, что ученые пока не могут прийти к единому мнению по поводу того, каким образом Нептун захватил такое крупное тело на свою орбиту. Тритон является одним из самых холодных мест в Солнечной системе. Когда "Вояджер-2" полетал мимо него в 1989 году, он обнаружил, что температура Тритона оставляет минус 235 градусов Цельсия, то есть она близка к абсолютному нулю. "Вояджер-2" также помог обнаружить на Тритоне активные гейзеры, поэтому Тритон считается одним из немногих геологически активных спутников в Солнечной системе.

10) Ганимед, спутник Юпитера


Обнаруженный в 1610 году Галилео Галилеем , Ганимед является самым крупным спутником в Солнечной системе. Он больше планеты Меркурий, а также его размер составляет около трех четверных Марса. Он настолько большой, что его можно было бы считать планетой, если бы он вращался не вокруг Юпитера, а вокруг Солнца. Примечательной особенностью этого спутника является то, что он единственный спутник в нашей системе, который имеет свое собственное магнитное поле. У него расплавленное железное ядро, благодаря которому и возникает магнитное поле. В 1996 году космический телескоп Хаббл обнаружил тонкий слой кислорода вокруг спутника, однако он настолько тонкий, что не может поддерживать жизнь.

Луна - единственный естественный спутник Земли. Когда-то мы были настолько уверенны в этом, что даже не дали своей луне какого-то определенного имени. С другой стороны это вполне оправдано, т.к. Луна являющаяся наиболее ярким и крупным объектом ночного неба, лишний раз в представлении не нуждается. Остальные же 6 спутников Земли настолько малы и далеки, что увидеть их можно только в мощные телескопы. Кроме того, вращаются они вокруг Солнца, но находятся под влиянием притяжения Земли.

Можно долго спорить по поводу того являются ли подобные объекты естественными спутниками, но поскольку, так сказать, официальная точка зрения по этому поводу еще не определена, то относить их к таковым пока ничего не запрещает. Международный Астрономический Союз, главенствующая организация в вопросах определения чем является то или иное небесное тело и как это тело правильно называть, обещает в скором будущем дать четкое определение понятиям «спутник» и «компонент гравитационной системы». Поэтому пока имеем то, имеем.

Итак, вместе с Луной у Земли 7 спутников. 5 из них являются квазиорбитальными астероидами или просто квазиспутниками, еще один относится к классу троянских астероидов. До определенного момента и те и другие (в данном случае другОЙ) были вполне обычными астероидами и вращались по своим более менее устойчивым орбитам вокруг Солнца, пока однажды не нарвались на огромную, относительно их габаритов, Землю в результате чего попали в орбитальный резонанс 1:1 с последней. Другими словами обращение Земли и «захваченных» астероидов синхронизировалось и теперь они делают один виток вокруг Солнца за одинаковое время.

В остальном эти два типа принципиально отличаются друг от друга, поэтому рассмотрим каждый по отдельности.

Квазиспутники Земли

Что такое квазиспутник? В принципе, им может стать практически любое небесное тело, попавшее в орбитальный резонанс 1 к 1 с планетой. Не смотря на полностью совпадающие орбитальные периоды, квазиспутники всегда имеют более значительный эксцентриситет (степень отклонения от окружности) орбиты, а иногда еще и выраженный наклон относительно плоскости эклиптики (плоскости, в которой вращается планета).

Главная особенность квазиспутников, как впрочем и троянских астероидов, заключается в том, что в любой момент времени они находятся ровно на том же расстоянии от Земли, что и год назад. Собственно, по этой причине их и причисляют к естественным спутникам.

С другой стороны их «верность» планете не всегда стабильна: продолжительность гравитационного тандема может составлять от нескольких орбитальных периодов до сотен тысяч витков.

Круитни

Самый крупный и известный среди квазиорбитальных спутников Земли - астероид Круитни (3753) . Он был открыт еще в 1986 году астрономом-любителем и стал первым известным небесным телом в Солнечной системе, которое двигалось по такой странной, но стабильной орбите. Позднее астрономы обнаружили подобных компаньонов у Венеры, Юпитера, Сатурна, Урана, Нептуна и даже Плутона.

К сожалению, что собой представляет Круитни мы толком и не знаем. Это астероид диаметром около 5 км. Он вращается по очень вытянутой и наклоненной к плоскости эклиптике орбите, перигелий (ближайшая к Солнцу точка орбиты) которой лежит между орбитами Меркурия и Венеры, афелий - между Марсом и Юпитером.

Луна - единственный естественный спутник Земли. Это второй по яркости объект на земном небосводе после Солнца и пятый по величине естественный спутник . Также является первым (и на 2010 год единственным) внеземным объектом естественного происхождения, на котором побывал человек. Среднее расстояние между центрами Земли и Луны - 384 467 км.

Лунный ландшафт своеобразен и уникален. Луна вся покрыта кратерам разного размера - от сотен километров до пары миллиметров. Долгое время учёные не могли заглянуть на обратную сторону Луны, это стало возможно с развитием технологий.

Сейчас учёные уже создали очень подробные карты обеих поверхностей Луны. Подробные лунные карты составляют для того, чтобы в ближайшем будущем подготовиться для высадки человека на Луну, удачного расположения лунных баз, телескопов, транспорта, поиска полезных ископаемых и т. п.

Название

Слово луна восходит к праславянской форме *luna < и.-е. *louksnā́ «светлая» (ж. р. прилагательного *louksnós), к этой же индоевропейской форме восходит и латинское слово lūna «луна». Греки называли спутник Земли Селеной (греч. Σελήνη), древние египтяне - Ях (Иях). На всех тюркских (кроме чувашского) языках луна будет «ай».

Движение Луны

В первом приближении можно считать, что Луна двигается по эллиптической орбите с эксцентриситетом 0,0549 и большой полуосью 384 399 км. Реальное движение Луны довольно сложно, при его расчёте необходимо учитывать множество факторов, например, сплюснутость Земли и сильное влияние Солнца, которое притягивает Луну в 2,2 раза сильнее, чем Земля. Более точно движение Луны вокруг Земли можно представить как сочетание нескольких движений:

Вращение вокруг по эллиптической орбите с периодом 27,32 сут;
прецессия (поворот плоскости) лунной орбиты с периодом 18,6 лет (см. также сарос);
поворот большой оси лунной орбиты (линии апсид) с периодом 8,8 лет;
периодическое изменение наклона лунной орбиты по отношению к эклиптике от 4°59′ до 5°19′;
периодическое изменение размеров лунной орбиты: перигея от 356,41 Мм до 369,96 Мм, апогея от 404,18 Мм до 406,74 Мм;
постепенное удаление Луны от Земли (примерно на 4 см в год) так, что её орбита представляет собой медленно раскручивающуюся спираль. Это подтверждают измерения, проводившиеся на протяжении 25 лет.

Силой, заставляющей Луну отдаляться от Земли, является передача момента импульса вращения Земли - Луне, посредством приливного взаимодействия.

Гравитационное взаимодействие Луны и Земли не постоянно, с увеличением расстояния сила взаимодействия падает. Это приводит к тому, что с увеличением расстояния скорость удаления Луны уменьшается.

Период обращения Луны вокруг Земли относительно звёзд равен 27,32166 суток, это так называемый сидерический месяц.

Полная Луна отражает только 7 % падающего на неё солнечного света. После периодов бурной солнечной активности отдельные места лунной поверхности могут слабо светиться вследствие люминесценции. Так как Луна не светится сама, а лишь отражает солнечный свет, с Земли видна только освещённая Солнцем часть лунной поверхности.

Луна обращается по орбите вокруг Земли, и тем самым угол между Землёй, Луной и Солнцем изменяется; мы наблюдаем это явление как цикл лунных фаз. Период времени между последовательными новолуниями составляет 29,5 дней (709 часов) и называется синодический месяц.

То, что длительность синодического месяца больше, чем сидерического, объясняется движением Земли вокруг Солнца: когда Луна относительно звёзд совершает полный оборот вокруг Земли, Земля к этому времени проходит уже 1/13 часть своей орбиты, и чтобы Луна снова оказалась между Землёй и Солнцем, ей нужно дополнительно около двух суток.

Хотя Луна и вращается вокруг своей оси, она всегда обращена к Земле одной и той же стороной, то есть вращение Луны вокруг Земли и вокруг собственной оси синхронизировано. Эта синхронизация вызвана трением приливов, которые производила Земля в оболочке Луны. Согласно законам механики, Луна ориентирована в поле тяготения Земли так, что на Землю направлена большая полуось лунного эллипсоида.

Между вращением Луны вокруг собственной оси и её обращением вокруг Земли существует различие: вокруг Земли Луна вращается по закону Кеплера (неравномерно, то есть близ перигея быстрее, близ апогея медленнее). Однако вращение спутника вокруг собственной оси равномерно. Именно благодаря этому возможно взглянуть на обратную сторону Луны с запада или с востока. Такое явление колебания называется оптической либрацией по долготе.

В связи же с наклоном оси Луны относительно плоскости Земли возможно заглянуть на обратную сторону с севера или с юга. Это также оптическая либрация, но по широте. Эти либрации суммарно позволяют наблюдать около 59 % лунной поверхности. Данное явление оптической либрации было открыто Галилео Галилеем в 1635 году, когда он был осуждён Инквизицией.

Также существует физическая либрация, обусловленная колебанием спутника вокруг положения равновесия в связи со смещённым центром тяжести, а также под действием приливных сил со стороны Земли. Эти колебания составляют т. н. физическую либрацию, которая составляет 0,02° по долготе с периодом 1 год и 0,04° по широте с периодом 6 лет.

Условия на поверхности Луны

На Луне практически отсутствует атмосфера. Содержание газов у поверхности в ночное время не превышает 200000 частиц/см³ и увеличивается днём на два порядка за счёт дегазации грунта. Такая концентрация газов равноценна глубокому вакууму, поэтому днём её поверхность накаляется до +120 °C, но ночью или даже в тени она остывает до −160 °C.

Небо на Луне всегда чёрное, даже днём. Огромный диск Земли выглядит с Луны в 3,67 раз больше, чем Луна с Земли и висит в небе почти неподвижно. Фазы Земли, видимые с Луны, прямо противоположны лунным фазам на Земле. Освещение отражённым светом Земли примерно в 50 раз сильнее, чем освещение лунным светом на Земле.

Поверхность Луны покрыта так называемым реголитом - смесью тонкой пыли и скалистых обломков, образующихся в результате столкновений метеороидов с лунной поверхностью. Толщина слоя реголита бывает от долей метра до десятков метров.

Приливы и отливы

Гравитационные силы между Землёй и Луной вызывают некоторые интересные эффекты. Наиболее известный из них - морские приливы и отливы. Если бы мы взглянули на Землю со стороны, мы увидели бы две выпуклости, находящиеся на противоположных сторонах планеты.

Причём одна точка - со стороны, ближайшей к Луне, а другая - с противоположной стороны Земли, наиболее удалённой от Луны. В мировом океане этот эффект выражен намного сильнее, чем в твёрдой коре, поэтому выпуклость воды больше. Амплитуда приливов (разность уровней прилива и отлива) на открытых пространствах океана невелика и составляет 30-40 см.

Однако вблизи берегов вследствие набега приливной волны на твёрдое дно, приливная волна увеличивает высоту точно так же, как обычные ветровые волны прибоя. Учитывая направление вращения вокруг Земли, можно составить картину следования приливной волны по океану. Сильным приливам больше подвержены восточные побережья материков. Максимальная амплитуда приливной волны на Земле наблюдается в заливе Фанди в Канаде и составляет 18 метров.

Две высших точки прилива образуются вследствие того, что гравитационное поле Луны достаточно неоднородно на протяжении размеров Земли. Если разложить вектор гравитационного поля, направленный к Луне, на 2 компоненты - параллельную оси Земля-Луна и перпендикулярную ей, то можно видеть, что причиной приливов является перпендикулярная компонента. Параллельная компонента на протяжении размеров

Земли меняется мало, но перпендикулярная компонента меняет знак! Она максимальна по модулю и направлена противоположно на боковых сторонах Земли, максимально удалённых от оси Земля-Луна. Это и есть «сила тяжести прилива», создающая сток воды океана в сторону участков, находящих на оси Луна-Земля с двух сторон земного шара.

Неоднородность поля Луны возле Земли значительно выше неоднородности поля Солнца. Хотя гравитация Солнца намного больше, но его поле на протяжении размеров Земли является практически однородным, так как расстояние до Солнца в 400 раз больше, чем расстояние до Луны. Поэтому приливы возникают главным образом по причине влияния Луны. Приливообразующая сила Солнца в среднем в 2,17 раза меньше.

Геология Луны

Благодаря её размеру и составу Луну иногда относят к планетам земной группы наряду с Меркурием, Венерой, Землёй и Марсом. Поэтому, изучая геологическое строение Луны, можно многое узнать о строении и развитии Земли.

Толщина коры Луны в среднем составляет 68 км, изменяясь от 0 км под лунным морем Кризисов до 107 км в северной части кратера Королёва на обратной стороне. Под корой находится мантия и, возможно, малое ядро из сернистого железа (радиусом приблизительно 340 км и массой, составляющей 2 % массы Луны). Любопытно, что центр масс Луны располагается примерно в 2 км от геометрического центра по направлению к Земле. На той стороне, которая повёрнута к Земле, кора более тонкая.

Измерения скорости спутников «Лунар Орбитер» позволили создать гравитационную карту Луны. С её помощью были обнаружены уникальные лунные объекты, названные масконами (от англ. mass concentration) - это массы вещества повышенной плотности.

Луна не имеет магнитного поля, хотя некоторые из горных пород на её поверхности проявляют остаточный магнетизм, что указывает на возможность существования магнитного поля Луны на ранних стадиях развития.

Не имеющая ни атмосферы, ни магнитного поля, поверхность Луны подвержена непосредственному воздействию солнечного ветра. В течение 4 млрд лет водородные ионы из солнечного ветра внедрялись в реголит Луны.

Таким образом, образцы реголита, доставленные миссиями «Аполлон», оказались очень ценными для исследования солнечного ветра. Этот лунный водород также может быть когда-нибудь использован как ракетное топливо.

Поверхность Луны

Поверхность Луны можно разделить на два типа: очень старая гористая местность (лунный материк) и относительно гладкие и более молодые лунные моря. Лунные моря, которые составляют приблизительно 16 % всей поверхности Луны, - это огромные кратеры, возникшие в результате столкновений с небесными телами, которые были позже затоплены жидкой лавой. Б

ольшая часть поверхности покрыта реголитом. Лунные моря, под которыми лунными спутниками обнаружены более плотные, тяжёлые породы, сконцентрированы на обращённой к Земле стороне из-за влияния гравитационного момента при формировании Луны.

Большинство кратеров на обращённой к нам стороне названо по имени знаменитых людей в истории науки, таких как Тихо Браге, Коперник и Птолемей. Детали рельефа на обратной стороне имеют более современные названия типа Аполлон, Гагарин и Королёв.

На обратной стороне Луны расположена огромная впадина (бассейн) диаметром 2250 км и глубиной 12 км - это самый большой бассейн в Солнечной системе, появившийся в результате столкновения. Море Восточное в западной части видимой стороны (его можно видеть с Земли) является отличным примером многокольцевого кратера.

Также выделяют второстепенные детали лунного рельефа - купола, хребты, рилли (от нем. Rille - борозда, жёлоб) - узкие извилистые долиноподобные понижения рельефа.

Пещеры

Японским зондом Кагуя обнаружено отверстие в поверхности Луны, расположенное недалеко от вулканического плато Холмы Мариуса, предположительно ведущее в тоннель под поверхностью. Диаметр отверстия составляет около 65 метров, а глубина, предположительно, 80 метров.

Учёные считают, что подобные тоннели сформированы путём затвердевания потоков расплавленной породы, где в центре лава застыла. Данные процессы происходили в период вулканической активности на Луне. Подтверждением данной теории является наличие извилистых борозд на поверхности спутника.

Подобные тоннели могут послужить для колонизации, благодаря защите от солнечной радиации и замкнутости пространства, в котором проще поддерживать условия жизнеобеспечения.

Похожие отверстия имеются и на Марсе.

Происхождение луны

До того, как учёные получили образцы лунного грунта, они ничего не знали о том, когда и как образовалась Луна. Существовало три принципиально разных теории:

Луна и Земля сформировались в одно и то же время из газо-пылевого облака;
Луна образовалась в результате столкновения Земли с другим объектом;
Луна сформировалась в другом месте и впоследствии была захвачена Землёй.

Однако новая информация, полученная путём детального изучения образцов с Луны, привела к созданию теории Гигантского столкновения: 4,57 миллиарда лет назад протопланета Земля (Гея) столкнулась с протопланетой Тейя. Удар пришёлся не по центру, а под углом (почти по касательной). В результате большая часть вещества ударившегося объекта и часть вещества земной мантии были выброшены на околоземную орбиту.

Из этих обломков собралась прото-Луна и стала обращаться по орбите с радиусом около 60 000 км. Земля, в результате удара, получила резкий прирост скорости вращения (один оборот за 5 часов) и заметный наклон оси вращения. Хотя у этой теории тоже есть недостатки, в настоящее время она считается основной.

По оценкам, основанным на содержании стабильного радиогенного изотопа вольфрама-182 (возникающего при распаде относительно короткоживущего гафния-182) в образцах лунного грунта, в 2005 году учёные-минералоги из Германии и Великобритании определили возраст лунных пород в 4 млрд 527 млн лет (±10 млн лет). Это самое точное на сегодняшний день значение.